INTERMOLECULAR EXCIPLEX FORMATION BETWEEN BENZENE AND SOME OLEFINIC COMPOUNDS

H. LEISMANN, J.MATTAY and H.-D. SCHARF

Lehrstuhl II und Institut für Organische Chemie der RWTH Aachen, Prof.-Pirlet-Strasse 1, D-5100 Aachen (F.R.G.)

Exciplex formation has been postulated as a first step in photochemical reactions of S_1 benzene with olefins [1, 2], dienes [3] and amines [1, 4]. We now report that exciplex fluorescence can be observed with S_1 benzene in the presence of particular olefinic compounds $(I \cdot V, Table 1)$.

TABLE 1

Data concerning exciplex formation of I - V with S₁ benzene in acetonitrile

No.		<i>I</i> _p (eV)	K _{sv} h (M ⁻¹)	λ _{max} ^c (nm)
I	CH ₃	7.92	119.0	390
II	СH ₃	8.36	133.0	390
III		8.54	57.0	380
IV		8.56	117.0	390
v	OSi(CH ₃) ₃ OSi(CH ₃) ₃	9.7	51.0	393

^aVertical ionization potential.

Since there is no obvious correlation between the ionization potentials, the Stern-Volmer constants and the fluorescence emission energies, the observed exciplexes are interpreted to be "weak exciplexes" [5] with dipole—dipole rather than charge transfer stabilization.

- 1 D. Bryce-Smith and A. Gilbert, Tetrahedron, 33 (1977) 2459.
- 2 J. Cornelisse, V. Y. Merritt and R. Srinivasan, J. Am. Chem. Soc., 95 (1973) 6197.
- 3 N. C. Yang and J. Libman, Tetrahedron Lett., (1973) 1409.
- 4 M. Bellas, D. Bryce-Smith, M. T. Clarke, A. Gilbert, G. Klunkin, St. Krestonosich, C. Manning and S. Wilson, J. Chem. Soc. Perkin Trans, 1, (1977) 2571.
- 5 V. Hershberger and R. W. Lumry, Photochem. Photobiol., 23 (1976) 391.

^bStern-Volmer quenching constant of benzene fluorescence.

^cWavelength of maximum fluorescence intensity (the detector was phototube R 446, uncorrected).